A Priori Error Estimates for Mixed Finite Element Approximations of the Acoustic Wave Equation
نویسندگان
چکیده
In this paper we derive optimal a priori L∞(L2) error estimates for mixed finite element displacement formulations of the acoustic wave equation. The computational complexity of this approach is equivalent to the traditional mixed finite element formulations of the second order hyperbolic equations in which the primary unknowns are pressure and the gradient of pressure. However, the displacement formulations with the physical variables of interest, displacement and pressure, requires less regularity on the displacement.
منابع مشابه
Optimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملError Estimates for Mixed Finite Element Approximations of the Viscoelasticity Wave Equation
This paper studies mixed finite element approximations to the solution of the viscoelasticity wave equation. Two new transformations are introduced and a corresponding system of first order differential-integral equations is derived. The semi-discrete and full-discrete mixed finite element methods are then proposed for the problem based on the Raviart-Thomas-Nedelec spaces. The optimal error es...
متن کاملA Posteriori Error Estimates for Mixed Finite Element Galerkin Approximations to Second Order Linear Hyperbolic Equations
In this article, a posteriori error analysis for mixed finite element Galerkin approximations of second order linear hyperbolic equations is discussed. Based on mixed elliptic reconstructions and an integration tool, which is a variation of Baker’s technique introduced earlier by G. Baker (SIAM J. Numer. Anal., 13 (1976), 564-576) in the context of a priori estimates for a second order wave equ...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 40 شماره
صفحات -
تاریخ انتشار 2002